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ABSTRACT 
 
Spatial relationship between vegetation and rainfall in Central Kazakhstan has been modelled using Normalized Difference Vegeta-
tion Index (NDVI) and rainfall data from weather stations. The modelling based on application of two statistical approaches: conven-
tional ordinary least squares (OLS) regression, and geographically weighted regression (GWR). The results support the assumption 
that the average impression provided by the OLS model may not accurately represent conditions locally. The OLS model applied to 
the whole study area was strong (R² = 0.63), however it gave no local description of the relationship. Application of the OLS at the 
scale of individual land cover classes resulted in a better prediction power of the model (R² = 0.75) and revealed that the response of 
vegetation to rainfall varies between the land cover classes. The GWR approach, dealing with spatial non-stationarity, significantly 
increases the model’s accuracy and prediction power (R² = 0.97), as well as highlights local conditions within every land cover class. 
In order to compare the OLS and the GWR models in terms of prediction uncertainty, we calculated Moran’s I for their residuals. 
Our results demonstrated that the GWR provides a better solution to the problem of spatially autocorrelated errors in spatial model-
ling compared to the OLS modelling.  

1. INTRODUCTION 
 
Climate is the most important factor affecting vegetation con-
dition. Great research effort has been made to derive models 
that predict spatial variations in vegetation by climates which 
are based on utilizing remotely sensing obtained vegetation 
indices and climatic data. The Normalized Difference Vege-
tation Index (NDVI) is the most used multi-spectral vegeta-
tion index which is highly correlated to green-leaf density 
and can be considered as a proxy for above-ground biomass 
(Tucker & Sellers, 1986). Several previous studies already 
modelled relationships between spatial or temporal patterns 
of NDVI and that of climatic factors. Particularly strong rela-
tionships in the arid regions show NDVI and rainfall (Rich-
ard & Poccard, 1998; Wang et al, 2001), NDVI and tempera-
ture or growing-degree days (Yang et al, 1998; Li et al, 2002) 
as well as NDVI and evapotranspiration (Ji & Peters, 2004).  

Modelling the spatial NDVI-climate relationship one should 
take into account that one hase to deal with a phenomenon of 
non-stationarity of this relationship in space. However, the 
conventional statistical regression method (global ordinary 
least squares regression, OLS) is stationary in a spatial sense. 
Stationarity means that a single model is fitted to all data and 
is applied equally over the whole geographic space of inter-
est. This regression model and its coefficients are constant 
across space assuming the relationship to be also spatially 
constant. That is usually not adequate for spatially differ-
enced data, especially by quantifying relationships at re-
gional or global scales. The differences between regression 
models established at different locations can be large with 
both the magnitude and sign of the model parameters vary-
ing. The easiest method to improve the regression model and 
to reduce these differences is the fitting of an individual OLS 
model for each land-cover or vegetation type. On this way, 
the variance in regression parameters between land-cover 
types can be  

 

 

highlighted and the prediction power of the regression model 
increases significantly (Wang et al, 2001; Ji & Peters, 2004, 
Li et al, 2004). However, this method does not make up the 
local non-stationarity in the relationship within the land-
cover type.   

An interesting and efficient alternative is to allow the pa-
rameters of the model to vary with space. Such non-
stationary modelling shows a greater prediction precision be-
cause the model being fitted locally is more attuned to local 
circumstances. Local regression techniques, such as localized 
OLS (moving window regression) or geographically 
weighted regression (GWR) help to overcome the problem of 
non-stationarity and calculate the regression model parame-
ters varying in space. This techniques provide a more appro-
priate and accurate basis for modelling relationship between 
various spatial variables and significantly reduce uncertainty 
in model prediction. For example, the local regression tech-
niques have been effectively used to quantify spatial relation-
ships between different variables at the field of human and 
economical geography (Fotheringham et al, 1996; Pavlov, 
2000: Fotheringham et al, 2002; McMillen, 1996), in soil sci-
ence and climatology (Murray & Backer, 1991; Brunsdon et 
al, 2001). In the field of remote sensing there are only rare 
studies applying local regression techniques for the analysis 
of spatial relationships between remotely sensing data and 
climatic variables (Foody, 2003; Foody, 2005; Wang et al, 
2005). 

In the submitted paper, we analyse spatial relationships be-
tween NDVI obtained from the satellites NOAA AVHRR 
and rainfall amounts in the southern margin of the Kazakh 
low hills. The aim of the study was to derive a regression 
model with strong focus on the accuracy of model prediction 
at a local scale. In order to find a model with the best predic-
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tion power, we tested three different regression techniques, 
two OLS regression models, and a local model based on geo-
graphically weighted regression (GWR). We demonstrated 
that scaling down from regional to local relationships signifi-
cantly increases the accuracy and the prediction power of a 
regression model. 

2. STUDY AREA 

The study area is located in the middle part of Kazakhstan 
between 46 and 50° northern latitude and 72° and 75° eastern 
longitude. The climate of the region is dry, cold and high 
continental. Average annual precipitation is above 250-300 
mm per year in the north of the study area, and below 150 
mm in the south. Most part of the precipitation falls during 
warm period from March to October. The temperature ampli-
tude is relative high: average January temperature is below –
12° C and average July temperature is about 26-28° C. 

The south of the study region is vegetated by sagebrush and 
perennial saltwort associations. Dominating vegetation spe-
cies here are Artemisia terrae-albae, Artemisia pauciflora, 
Anabasis salsa, Salsola orientalis. The northern section of 
the study region is occupied by steppe vegetation, where do-
minate short grassland species such as Festuca sulcata, Stipa 
capillata and Stipa lessingiana. The semi-desert vegetation 
complex occupying the mid of the study area represents a 
complex combination of real steppe turf grasses and semi-
shrubs with halophytes. Distribution of land cover types in 
the study area is shown in Figure 1.  

3. DATA USED IN THE STUDY 
 
3.1 NDVI dataset 

We used a 10-day 1-km NDVI data set from the global 
AVHRR archive for every growing season (April-October) 
during the years 1992, 1993, and 1995. The data set is gener-
ated using a maximum value composite (MVC) procedure, 
which selects the maximum NDVI value within 10-day pe-
riod for every pixel (Holben, 1986). This procedure is used to 
reduce noise signal in NDVI data due to clouds or other at-
mospheric factors. In addition to that, we removed noisy pix-
els remained in the NDVI maps characterized by exception-
ally high or low NDVI values relatively to their pixel 
neighbourhood. The method of the identification of noisy pi-
xels used a window with a size of 3*3 pixels, which was mo-
ving over NDVI scenes and calculated a mean value of the 
surrounding pixels for every point. After subtracting the ori-
ginal pixel value from the mean value of surrounding pixels, 
differences of NDVI more than 0.12 were considered as noi-
se. Then, pixels identified as noisy were replaced by the sur-
rounding mean. From the AVHRR NDVI data set we com-
puted a 3-year mean NDVI for every 10-day period 
beginning with April through October. At last, a NDVI data 
set accumulated over growing season, , was pro-
duced by summing up the 10-day mean values derived. Sev-
eral studies used the  as a measure of the magni-
tude of greenness available through the growing season time 
which reflects the capacity of the land to support photosyn-
thesis and net primary production for a growing season. A 
close relationship between and precipitation, es-
pecially in arid and semi-arid regions has well been estab-
lished in the literature (Li et al, 2004; Budde et al, 2005).  
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Figure 1. Map of land cover types. 
 
 
3.2 Precipitation dataset 

The precipitation data in the study consist of 10-day rainfall 
data collected and calculated by the National Hydro-
Meteorological Centre of Kazakhstan for 9 climate stations 
placed in the study area for the period April-October 1985-
2004. Using these data, we calculated a total average precipi-
tation over the growing season for each climate station dur-
ing the period 1985-2004.  

The preparation of a gridded precipitation map was made by 
interpolating data between the stations. The interpolation 
method was kriging with an external drift. Use of a secon-
dary variable, elevation, for the preparation of the gridded 
map was important because of a strong influence of relief on 
spatial pattern in precipitation in the study area (Figure 2, 
left).   

4. METHODS 

4.1 Regression models 

Relationships between NDVI and precipitation were derived 
by using conventional ordinary least squares (OLS) and geo-
graphically weighted regression (GWR) analysis. The first 
one was fitted both to the whole study region (global OLS) 
and to each land-cover type (stratified OLS). The second one 
uses the location information for each observation and allows 
the model’s parameters to vary in space. As OLS and GWR 
have been well documented, we just briefly describe the 
theoretical background, especially for the GWR method. A 
full description of geographic weighted regression and its 
treatments is provided by (Fotheringham et al, 2002).  

The simple linear model, usually fitted by ordinary least 
squares methods (OLS), is: 

       

εβα ++= xy *     (1) 

 

Where a is the intercept of the line on the y axis (where x = 
0), β represents the slope coefficient for independent variable 
x, and ε is the deviation of the point from the regression line. 



Fitting the best-fit regression model incorporates the problem 
to find a and β so that the total error is minimized. ∑ 2

iε
 

  

 
Figure 2. Growing season precipitation in mm (left) and NDVI accumulated over growing season (right).

 

 

 In this model, the two variables to be related are y, the de-
pendent variable (for this study - NDVI), and x, the inde-
pendent variable (rainfall). The regression model’s parame-
ters a and β derived by the above approach are assumed to be 
stationary globally over the analysis space (the whole study 
region or the geographical space occupied by a land-cover 
type). In other words, applying the conventional global re-
gression model to studying relationships between vegetation 
distribution and its conditions and environmental parameters, 
one bases his calculation on the assumption, that at each 
point of the study area this model is absolutely representative 
and the quantified relationship is constant.  

Geographically weighted regression is a local regression 
technique that deals with the problem of non-stationarity 
through local disaggregating global statistics and calculates 
the relationship between NDVI and its explanatory variables 
for every point. In geographically weighted regression, the 
regression and its parameters in each point (pixel) of the stu-
dy region is quantified separately and independently from o-
ther points. The regression model is calibrated on all data that 
lie within the region described around a regression point and 
the process is repeated for all regression points. The resulting 
local parameter estimates can then be mapped at the locations 
of the regression points to view possible non-stationarity in 
the relationship being examined. The size of the moving win-
dow (kernel) is less than the region size and can be varied 
from one point to another. GWR focused on deriving local 
parameters to be estimated. The above OLS model can be 
rewritten as: 

 

εβα +Θ+Θ= xy *)()(       (2) 

 

where Θ indicates that the parameters are to be estimated at a 
location for which the spatial coordinates are provided by the 
vector Θ.  

GWR being a local technique is to be distinguished from oth-
er local regressions, as it works in the way that each data 
point is weighted by its distance from the regression point.  

 

 

This means that a data point closer to the regression point is 
weighted more heavily in the local regression than are data 
points farther away. For a given regression point, the weight 
of a data point is at maximum when it has the same location 
as the regression point, and are more lightly when it has a lo-
cation at a range of the moving window. In GWR an observa-
tion is weighted in accordance with its proximity to location i 
so that the weighting of an observation is no longer constant 
but varies with i. The matrix form of parameter estimation 
for i is expressed as: 

 

yWXXWX TT )())(()(ˆ),(ˆ 1 θθθβθα −=     (3) 

 

where α̂ and are intercept and slope parameter in location 
i; and 

β̂
)(θW is weighting matrix whose diagonal elements 

represent the geographical weighting associated with each si-
te at which measurements were made for location of i.  

Spatial weighting function can be calculated by several vari-
ous methods. For fixed kernel size, the weight of each point 
can be calculated by applying Gaussian function 

2)]/(2/1exp[ bdw ijij −=         (4) 

where is the distance between regression point i and data 

point j, and b is referred to as a bandwidth. 
ijd

An alternative way is the bi-square function 

22 ])/(1[ bdw ijij −= ,           (5) 

when < b and = 0 otherwise.       ijd ijw



In the practice, for each variable from equation (2) its 
weighting value can be calculated by applying a weighting 
matrix W(Θ). The weighting matrix is an n by n matrix 
whose off-diagonal elements are zero and whose diagonal 
elements denote the geographical weighting of each of the n 
observed data for regression point i. After that, moving a 
kernel over the space can derive a local regression at each 
point in the analysis area.  

Estimated parameters in geographically weighted regression 
depend on the weighting function of the kernel selected. As 
the bandwidth, b, becomes larger, the closer will be the mo-
del solution to that of global OLS. Conversely, as the band-
width decreases, the parameter estimates will increasingly 
depend on observations in close proximity to regression point 
i and will have increased variance. The problem is therefore 
how to select an appropriate bandwidth in GWR. To establish 
an appropriate bandwidth, b, we used the cross-validation 
approach (CV) which determines b by minimisation of the 
sum of squared errors between predicted variables and those 
observed. According to (11), the equation for the cross-
validation sum of squared errors CVSS is statistically ex-
pressed as: 

2

1
)](ˆ[ byyCVSS i

n

i
i −=∑

=

           (6) 

where is the observed value and is the fitted value 

of for bandwidth b.  
iy )(ˆ byi

iy

As general rule, the lower the CVSS, the closer the approxi-
mation of the model to reality. The best model is the one with 
the smallest CVSS. For our GWR model, the bandwidth of 9 
pixels was decided to be the most appropriate.  

 
4.2 Accuracy analysis  

The results obtained using global OLS, stratified OLS and 
GWR were compared by the amount of  variance 
explained by every regression model. A general rule is that 
the higher is R² the better is the understanding of the vari-
ables responsible for the variation in  values ob-
served. Generally, a prediction power of a regression model 
increases with the increase of R². We plotted the observed 

 values against the predicted  values 
to compare the prediction power of each regression model.  
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The standard error, SE, was used as a guide to the accuracy 
of the predictions. Using the standard error is based on cen-
tral limit theorem, which says that for large sample size n the 
conditional distribution of the error should be approximately 
Gaussian (or normal). For a given sample the standard error 
can be calculated by the equation: 

                      
n
sSE =                          (7) 

where,  
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                               (8) 

where, s is the standard deviation of the variable z and n is 
the number of data used. In the GWR, iz  exposes the mean 

value of a given kernel. The number of data depends on the 
kernel size.  

Regression residuals are deviations of the points from the re-
gression line. They contain a very important information 
about the prediction accuracy of a regression model. We 
were interested not only in values of residuals, but also in the 
spatial information associated with error. The map of residu-
als might highlight areas of over-prediction (positive errors) 
and under-prediction (negative errors). An independent dis-
tribution of residuals over the analysis space is the sign for a 
non-problematic regression model. Spatial patterns of regres-
sion residuals containing positive autocorrelation indicate 
that a model created is problematic: the standard errors are 
underestimated and the correlation coefficient often indicates 
a significant relationship between variables when in fact 
there is not (Clifford et al, 1989). For each regression model, 
we calculated spatial autocorrelation of the residuals. We 
were interested in the comparison of the results from the 
global and the local models. In this study, the Moran’s I coef-
ficient was used as a measure of autocorrelation. It is the 
most commonly used coefficient in univariate autocorrelation 
analysis and is given as:  
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where  is the number of samples,  and  are the data 

values in quadrats i  and , 

n iy jy

j y  is the average of  and  
is an element of the spatial weights matrix W. Under the null 
hypothesis of no spatial autocorrelation, Moran’s I has an ex-
pected value near zero, with positive and negative values in-
dicating positive and negative autocorrelation, respectively. 

y ijw

5. RESULTS AND DISCUSSION 

Spatial distribution of  roughly corresponds to 
that of rainfall (Figure 2). Regression analysis based on the 
applying of conventional global OLS regression revealed that 
there was a strong relationship between spatial distribution of 
the  and precipitation. 

accumNDVI
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The global OLS regression model between  and 
precipitation fitted to all vegetated pixels explains about 64% 
of spatial variance in vegetation distribution and was ex-
pressed as: 

accumNDVI

 

PNDVIaccum *0258.00854.0 +=        (10) 

(R² = 0.64) 

where P is precipitation. 

The standard error used as a measure for prediction accuracy 
was 0.21 or about 5 % from the mean  value. The 
relatively low value of the standard error might give assump-
tion that the derived regression model provides an accurate 
description of the relationship between variables. However, 
the two regression variables, both  and precipita-
tion data contain positive autocorrelation (graphs not shown). 
Their Moran’s I values up to a distance of ca. 100 km are sig-
nificantly larger than the values expected under the null hy-
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pothesis of no positive autocorrelation. It is known that spa-
tial autocorrelation is problematic for statistical analysis like 
OLS regression. When conventional OLS regression is ap-
plied to the analysis of data containing positive autocorrela-
tion, there are two problems: (1) the standard error of the re-
gression coefficient is underestimated, (2) the residual mean 
square may seriously underestimate the variance of the error 
term, hence the coefficient of determination (R²) is overesti-
mated (Clifford et al., 1989). Recent studies tried to over-
come these problems by applying spatial regression tech-
nique that can adjust for spatial autocorrelation inherent in 
the regression model on the basis of a variogram function 
(Titelsdorf, 2000; Ji & Peters, 2004). 

The result of the global OLS analysis encouraged us for a 
further work that aimed to increase the understanding of the 
relationship between variables. One of the ways to reduce the 
model uncertainty is to introduce other variables into the 
model specification. Another way may be an improving re-
gression model by disaggregating (stratification) the global 
regression model into a separate model for each of land cover 
types. 

We tried to reduce the amount of unexplained  
and the negative influence of spatial autocorrelation in that 
way that we performed the OLS regression analysis sepa-
rately to the four main vegetation types represented in the 
study region. With regard to vegetation type, the results indi-
cate that the coefficient of determination, R², increases from 
desert to semi-desert, to short grassland, and to steppe, with 
value of 0.36, 0.44, 0.52, and 0.67 respectively. The compo-
nents of the regression equation vary in a wide range: there 
are notable differences in regression slope and intercept be-
tween the vegetation types. The stratification of the OLS 

model by land-cover types clearly illustrates presence of non-
stationarity in the general relationship between  
and precipitation, which may now be written as: 

accumNDVI
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PNDVIaccum *)0205.00017.0()3178.66668.0( −+−=   
 (11) 

 (R² = 0.75)                
 
Values for the range in both intercept and slope parameters 
are given in brackets. We concluded that the global OLS re-
gression can not possibly be considered stationary. There is 
spatial variation in intercept and slope parameters as well as 
in the coefficient of determination, R², between the land-
cover categories. These results assume a different response of 
vegetation to precipitation by various land cover categories.  
That agrees with the results of other research works about dry 
regions which also deal with the influence of NDVI-rainfall 
relationships by land cover type (Yang et al., 1998; Li et al., 
2002; Wang et al., 2001).  
 
Disaggregating of global OLS regression model into four 
stratified OLS models has significantly improved the model-
ling certainty and quality. Although, the amount of variance 
in accumNDVI  unexplained remains relatively high, but the 
accuracy of the prediction is increased: there is a significant 
decrease of standard error in comparison with the global OLS 
model. The smallest SE was 0.10 for steppe grassland, while 
the largest SE of prediction is equal to 0.17 and was calcu-
lated for short grassland.  

 

  
Figure 3. Spatial variations in regression outputs from the GWR analysis of  against precipitation: (a) model intercept; 

(b) model slope parameter; (c) local coefficient of determination, R; (d) standard error of the model prediction. 
accumNDVI

 The GWR method has also been applied for modelling the re-
lationship between  and precipitation. To obtain accumNDVI



localized results, a 9 by 9 pixels window was placed over 
each pixel which provides 81 data points for the model  

 

calibration at each pixel location. This was the window size 
which was determined by minimisation of the cross valida-
tion square sum, CVSS. The GWR model allows the regres-
sion parameters to vary in space and establishes considerably 
stronger relationship between the two variables. The general 
regression equation may be given as:  

 

PNDVIaccum *)97.136.2()03.598.4( −−+−−=        (12) 

  (R² = 0.97) 

In the brackets we have written range values for regression 
intercept and slope parameters.  

Figure 3 summarizes the results derived from the geographi-
cally weighted regression analysis between and 
rainfall. Panel a shows spatial distribution of the intercept 
that had a mean of –0.32 and a range of –4.98 to 5.03. Large 
positive values are distributed mainly in the north of the re-
gion where short grassland and steppe grassland dominate 
while low values are mainly in the mid and in the south. Here 
dominate semi-desert and desert vegetation.  

accumNDVI

Panel b shows spatial variation in the slope parameter. This 
parameter had a mean of 0.0418 with a range of –2.36 to 1.97 
and a standard deviation of 0.22. Negative values of the slope 
parameter indicate that in some locations  de-
creases when precipitation increases. Negative values are 
mainly in the northern and western parts of the study region 
where crop fields/grassland mosaics dominate. The valley 
bottoms in the northeast also exhibit negative values of the 
slope parameter.  

accumNDVI

Panel c displays the spatial variation in the strength of the re-
lationship. The goodness-of-fit, measured by the coefficient 

of determination, R², varied in the space and ranged from 
0.016 to 0.99, with R² > 0.75 for two-thirds of the study re-
gion. Low values of R² are mainly distributed in the west and 
over a swath of land from the east to the northwest in upper 
part of the map. The entire model performance was signifi-
cantly improved both for standard error of prediction accu-
racy and for the prediction power.  

Panel d in Figure 3 indicates standard error term which has 
been used as a guide to prediction accuracy. The standard er-
ror estimated for the GWR ranged from –0.0012 to 0.04. 
Values of standard error are several times smaller than that 
estimated for the global OLS (SE = 0.21) and the stratified 
OLS models (SE = 0.10-0.17). The GWR model enables to 
map the standard error for every pixel. The spatial patterns in 
the standard error reveal the danger of using the single esti-
mate for SE derived from a global OLS locally, they vary in 
magnitude from pixel to pixel. The spatial patterns of SE 
clearly correspond to that of land-cover categories. This sug-
gests that the GWR model significantly improved prediction 
of  by rainfall over the OLS model.  accumNDVI

The spatial patterns in regression residuals are important in-
dices to examine how accurate the regression model reveals 
the real relationship. The validity of the regression statistics 
depends on the distribution of the residuals. There are three 
conditions which have to be fulfilled by the residuals: (a) the 
residuals must be normally distributed; (b) the residuals must 
be homoscedastic; (c) the residuals must not be autocorre-
lated (Tiefelsdorf, 2000). If the residuals exhibit some non-
random patterns the model created is problematic. A diagnos-
tic statistics indicating problems in regression modelling is 
the degree of spatial autocorrelation exhibited by the residu-
als from the model.  
The standard errors are usually underestimated when positive 
autocorrelation is present. Visual interpretations of the resid-
ual maps shown in Figure 4 give us a good impression that 
there is a clear separation of the residuals from the global 
OLS in the space. In the northern part of the study area, the 
residuals tend to exhibit positive values, while in the south

 



Figure 4. Spatial patterns of regression residuals (upper panels) and corresponding residuals histograms (lower panels) for the global 
OLS model (a), the OLS model based on stratification by land-cover types (b), the GWR model (c). 

the residuals values are mainly negative (Figure 4, a). The 
global OLS model underestimates when  is high 
and overestimates when NDVI is low. Patterns in the mapped 
residual values appear to correspond clearly with patterns in 
land-cover. The positive deviations are associated with the 
dry steppe vegetation cover, while the negative deviations are 
mainly observed in the desert zone. The spatial patterns of 
residuals from the OLS model stratified by land-cover types 
are not so clear as those for the global OLS model, but the 
separation in the space also remains (Figure 4, b). Only the 
GWR model allowed destructing the spatial dependence of 
the regression residuals (Figure 4, c). The GWR residuals 
display no clear spatial patterns and their distribution over 
the study area seems to be close to random.  

accumNDVI

Spatial autocorrelation measures the similarity between sam-
ples for a given variable as a function of spatial distance. For 
the global OLS model and the GWR model, we calculated 
the Moran’s I of the residuals to examine the effect of cali-
brating the models locally by GWR rather than globally. It is 
proved that the local calibration removes much of the prob-
lems of spatially autocorrelated error terms included in tradi-
tional global OLS model (Fotheringham et al, 2002, pp. 112-
117). We were interested in the comparison of the results 
from the global and local models.  

Figure 5 shows the spatial autocorrelograms for the global 
OLS model residuals and the residuals from the GWR model. 
As expected, the error terms are most strongly autocorrelated 
for the global OLS model. The OLS model residuals had sig-
nificant spatial autocorrelation up to circa 50 km. In compari-
son, no significant positive spatial autocorrelation was found 
for the GWR model residuals. It suggests that the calibration 
of local model reduces the problem of spatially autocorre-
lated error terms. The GWR model demonstrates the ability 
to deal with problems of spatial non-stationary.   

 

 
Figure 5. Spatial autocorrelograms for OLS residuals and re-
siduals from the GWR model. The autocorrelogram of the 
OLS residuals indicates that Moran’s I values up to a lag dis-
tance of more than 40 km are significantly larger than the 
value expected under the null hypothesis of no positive auto-
correlation. The autocorrelogram of the GWR residuals dis-
plays no significant positive autocorrelation. 
 

6. CONCLUSION 

In this paper we modelled the spatial relationship between 
NDVI and rainfall in a semi-arid region of Kazakhstan. We 

demonstrated how the model accuracy and model prediction 
power increase through scaling down from regional to local 
analysis. The analysis based on the use of two different re-
gression techniques: one is the global ordinary least squares 
regression, OLS, which assumes the relationship to be sta-
tionary in space, and the other is the geographically weighted 
regression, which allows the regression parameters to vary 
over space. The results of the GWR suggest that it provides 
more accurate predictions than the OLS regression model. 

The study found a high spatial non-stationarity in the strength 
of relationship and regression parameters both between the 
land-cover types and within each land-cover type itself. The 
ordinary least squares regression model has been applied to 
the whole study area was superficially strong (R² = 0.63), 
however it delivered no local description of the relationship. 
Applying the OLS at the scale of the separate land cover 
classes reduced significantly the amount of unexplained vari-
ance in accumNDVI  (for the whole model R² = 0.75) and re-
vealed a different response of various vegetation types to 
rainfall. The strength of the relationship between NDVI and 
rainfall increased from desert (R² = 0.36), to semi-desert (R² 
= 0.44), to short grassland (R² = 0.52), and to steppe grass-
land (R² = 0.67) respectively. The coefficient of determina-
tion, R², was higher for the GWR model. The approach of 
geographically weighted regression provided considerably 
stronger relationships from the same data sets (R² value for 
the general regression = 0.97), as well as highlighted local 
variations within the land cover classes. The amount of vari-
ance in NDVI unexplained was not as large as had been an-
ticipated from the OLS analysis. The standard error (SE) was 
used as a guide to accuracy of the predictions. For the global 
OLS modeling, SE was 0.21. The SE calculated through the 
stratified OLS model for the land-cover types were a few 
smaller than for the whole region. Fitting the regression mo-
del into a pixel scale, what was achieved through application 
of the GWR, significantly reduces error terms. As expected, 
the errors terms shown by the results of the GWR are several 
times lower ranging from 0.0012 to 0.04.  

Applying GWR method for dealing with spatial relationship 
significantly reduces both the degree of autocorrelation and 
absolute values of the regression residuals. Figure 4 (upper 
right panel) displays that the residuals from the global OLS 
model clearly exhibit positive spatial autocorrelation with an 
area of positive residuals grouped together (in the north) and 
also an area of negative residuals grouped together (in the 
south). The spatial autocorrelation in the residuals from the 
equivalent GWR model, shown in Figure 4 (lower right pa-
nel), is no longer evident. There are no obvious patterns to 
the residuals which appear randomly over the region. The re-
sults suggest that GWR provides a better solution to the prob-
lem of spatially autocorrelated error terms in spatial model-
ling compared to the global regression modelling. 

The results also suggest that the calibration of local rather 
than global models reduces the problem of spatially autocor-
related errors. The residuals from the global OLS model 
clearly exhibited positive spatial autocorrelation up to ap-
proximately 50 km. The residuals from the GWR model dis-
played no positive autocorrelation, suggesting the ability of 
GWR approach to deal with spatial non-stationary problems. 
The GWR provides a more directly interpretable solution to 
the problem of spatially autocorrelated errors in spatial mod-



eling compared with the global forms of spatial regression 
modelling. In GWR, the spatial non-stationarity of the pa-
rameters is modelled directly, rather than allowing the non-
stationarity to be reflected through the error terms in the glo-
bal model. This agrees with the results that have been dis-
cussed by (Fotheringham et al, 2002; Wang et al, 2005). 

Our study proved the superiority of GWR over global OLS 
model in analysis the relationship between patterns in NDVI 
and precipitation. This superiority is mainly due to the con-
sideration of the spatial variation of the relationship over the 
study region. Global regression techniques likes OLS may 
ignore local information and, therefore, indicate incorrectly 
that a large part of the variance in NDVI was unexplained. 
The non-stationary modelling based on GWR approach has 
the potential for greater prediction precision because the mo-
del is more tuned to local circumstances, although clearly a 
greater number of data is required to allow reliable local fit-
ting.   
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